Irregular isomonodromic deformations for Garnier systems and Okamoto’s canonical transformations

نویسنده

  • Marta Mazzocco
چکیده

In this paper we describe the Garnier systems as isomonodromic deformation equations of a linear system with a simple pole at 0 and a Poincaré rank two singularity at infinity. We discuss the extension of Okamoto’s birational canonical transformations to the Garnier systems in more than one variable and to the Schlesinger systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutation Relations and Discrete Garnier Systems

We present four classes of nonlinear systems which may be considered discrete analogues of the Garnier system. These systems arise as discrete isomonodromic deformations of systems of linear difference equations in which the associated Lax matrices are presented in a factored form. A system of discrete isomonodromic deformations is completely determined by commutation relations between the fact...

متن کامل

Isomonodromic deformation of resonant rational connections

We analyze isomonodromic deformations of rational connections on the Riemann sphere with Fuchsian and irregular singularities. The Fuchsian singularities are allowed to be of arbitrary resonant index; the irregular singularities are also allowed to be resonant in the sense that the leading coefficient matrix at each singularity may have arbitrary Jordan canonical form, with a genericity conditi...

متن کامل

Isomonodromic deformations in genus zero and one: algebrogeometric solutions and Schlesinger transformations

Here we review some recent developments in the theory of isomonodromic deformations on Riemann sphere and elliptic curve. For both cases we show how to derive Schlesinger transformations together with their action on tau-function, and construct classes of solutions in terms of multi-dimensional theta-functions. The theory of isomonodromic deformations of ordinary matrix differential equations o...

متن کامل

Schlesinger transformations for elliptic isomonodromic deformations

Schlesinger transformations are discrete monodromy preserving symmetry transformations of the classical Schlesinger system. Generalizing well-known results from the Riemann sphere we construct these transformations for isomonodromic deformations on genus one Riemann surfaces. Their action on the system’s tau-function is computed and we obtain an explicit expression for the ratio of the old and ...

متن کامل

Algebraic and Geometric Isomonodromic Deformations

Using the Gauss-Manin connection (Picard-Fuchs differential equation) and a result of Malgrange, a special class of algebraic solutions to isomonodromic deformation equations, the geometric isomonodromic deformations, is defined from “families of families” of algebraic varieties. Geometric isomonodromic deformations arise naturally from combinatorial strata in the moduli spaces of elliptic surf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003